The aerospike engine is a type of rocket engine that maintains its aerodynamic efficiency across a wide range of . It belongs to the class of altitude compensating nozzle engines. Aerospike engines were proposed for many single-stage-to-orbit (SSTO) designs. They were a contender for the Space Shuttle main engine. However, as of early 2026 no such engine was in commercial production, although some large-scale aerospikes were in testing phases.
The term aerospike was originally used for a truncated plug nozzle with a rough conical taper and some gas injection, forming an "air spike" to help make up for the absence of the plug tail. However, a full-length plug nozzle may also be called an aerospike.
Instead of firing the exhaust out of a small hole in the middle of a bell, an aerospike engine avoids this random distribution by firing along the outside edge of a wedge-shaped protrusion, the "spike", which serves the same function as a traditional engine bell. The spike forms one side of a "virtual" bell, with the other side being formed by the outside air.
The idea behind the aerospike design is that at low altitude the ambient pressure compresses the exhaust against the spike. Exhaust recirculation in the base zone of the spike can raise the pressure in that zone to nearly ambient. Since the pressure in front of the vehicle is ambient, this means that the exhaust at the base of the spike nearly balances out with the drag experienced by the vehicle. It gives no overall thrust, but this part of the nozzle also doesn't lose thrust by forming a partial vacuum. The thrust at the base part of the nozzle can be ignored at low altitude.
As the vehicle climbs to higher altitudes, the air pressure holding the exhaust against the spike decreases, as does the drag in front of the vehicle. The recirculation zone at the base of the spike maintains the pressure in that zone to a fraction of 1 bar, higher than the near-vacuum in front of the vehicle, thus giving extra thrust as altitude increases. This effectively behaves like an "altitude compensator" in that the size of the bell automatically compensates as air pressure falls.
The disadvantages of aerospikes seem to be extra weight for the spike. Furthermore, the larger cooled area can reduce performance below theoretical levels by reducing the pressure against the nozzle. Aerospikes work relatively poorly between Mach number 1–3, where the airflow around the vehicle has reduced the pressure, thus reducing the thrust.
In the linear aerospike the spike consists of a tapered wedge-shaped plate, with exhaust exiting on either side at the "thick" end. This design has the advantage of being stackable, allowing several smaller engines to be placed in a row to make one larger engine while augmenting steering performance with the use of individual engine throttle control.
Three XRS-2200 engines were built during the X-33 program and underwent testing at NASA's Stennis Space Center. The single-engine tests were a success, but the program was halted before the testing for the two-engine setup could be completed. The XRS-2200 produces thrust with an Specific impulse of 339 seconds at sea level, and thrust with an Isp of 436.5 seconds in a vacuum.
The RS-2200 Linear Aerospike Engine was derived from the XRS-2200. The RS-2200 was to power the VentureStar single-stage-to-orbit vehicle. In the latest design, seven RS-2200s producing each would boost the VentureStar into low Earth orbit. The development on the RS-2200 was formally halted in early 2001 when the X-33 program did not receive Space Launch Initiative funding. Lockheed Martin chose to not continue the VentureStar program without any funding support from NASA. An engine of this type is on outdoor display on the grounds of the NASA Marshall Space Flight Center in Huntsville Alabama.
The cancellation of the Lockheed Martin X-33 by the federal government in 2001 decreased funding availability, but aerospike engines remain an area of active research. For example, a milestone was achieved when a joint academic/industry team from California State University, Long Beach (CSULB) and Garvey Spacecraft Corporation successfully conducted a flight test of a liquid-propellant powered aerospike engine in the Mojave Desert on 20 September 2003. CSULB students had developed their Prospector 2 (P-2) rocket using a 1,000 lbf (4.4 kN) LOX/ethanol aerospike engine. This work on aerospike engines continues; Prospector-10, a ten-chamber aerospike engine, was test-fired 25 June 2008.
Further progress came in March 2004 when two successful tests sponsored by the NASA Dryden Flight Research Center using high-power rockets manufactured by Blacksky Corporation, based in Carlsbad, California. The aerospike nozzles and solid rocket motors were developed and built by the rocket motor division of Cesaroni Technology Incorporated, north of Toronto, Ontario. The two rockets were solid-fuel powered and fitted with non-truncated toroidal aerospike nozzles. Flown at the Pecos County Aerospace Development Center, Fort Stockton, Texas, the rockets achieved apogees of and speeds of about Mach number 1.5.
Small-scale aerospike engine development using a hybrid rocket propellant configuration has been ongoing by members of the Reaction Research Society.
In 2020 the TU Dresden and Fraunhofer IWS started their CFDμSAT-Project for research on additively manufactured aerospike-engines. A prototype has already been tested in a test cell at TU Dresden's Institute of Aerospace Engineering, achieving a burn time of 30 seconds.
Firefly Alpha 1.0 was designed to carry payloads of up to . It uses carbon composite materials and uses the same basic design for both stages. The plug-cluster aerospike engine puts out of thrust. The engine has a bell-shaped nozzle that has been cut in half, then stretched to form a ring with the half-nozzle now forming the profile of a plug.
This rocket design was never launched. The design was abandoned after Firefly Space Systems went bankrupt. A new company, Firefly Aerospace, has replaced the aerospike engine with a conventional engine in the Alpha 2.0 design. However, the company has proposed Firefly Gamma, a partially reusable spaceplane with aerospike engines.
In June 2017, ARCA announced that they would fly their Demonstrator3 rocket to space, also using a linear aerospike engine. This rocket was designed to test several components of their Haas 2CA at lower cost. They announced a flight for August 2017. In September 2017, ARCA announced that, after being delayed, their linear aerospike engine was ready to perform ground tests and flight tests on a Demonstrator3 rocket.
On 20 December 2019, ARCA tested the LAS 25DA aerospike steam rocket engine for the Launch Assist System.
After successfully testing the demonstrator DemoP1, Pangea plans to up-scale to the 300 kN ARCOS engine.
The original MIRA demonstrator was catastrophically damaged in a runway accident in February 2024.
On 29 October 2024, the company was the first ever to ignite an aerospike engine in a flight over the Baltic Sea, powering a four-engine, kerosene-fueled, turbojet MIRA-II demonstrator. The test involved a three-second burn to collect data with minimal engine stress. The vehicle achieved an acceleration of 4 m/s2, producing 900 newtons of thrust.
On 27 February 2025, it was announced that the company had been commissioned by the Bundeswehr procurement office BAAINBw to develop a two-stage, horizontal take-off and fully reusable hypersonic research aircraft. In addition to its use as a hypersonic testbed and experimental platform for defense-related and scientific research, the aircraft can also be used as a small satellite carrier. POLARIS Spaceplanes plans to develop a prototype of a fully reusable spaceplane capable of transporting loads of up to 1,000 kilograms into space by 2028.
The engine was 3D-printed using selective laser melting as a single monolithic part from copper (CuCrZr). The central spike was cooled using LOX, while the outer jacket was cooled using the fuel. The injector head measured 600 mm in diameter and a nozzle approximately 1.6 meters tall.
The injector head measured 600 mm in diameter and a nozzle approximately 1.6 meters tall. The company claimed that it had progressed from specification to hot-fire in under three weeks creating a dual 20 kN methalox bell-nozzle and aerospike in December 2025. The engine was demonstrated with both kerolox and methalox.
Variations
Performance
Implementations
Firefly Aerospace
ARCA Space
KSF Space and Interstellar Space
Rocketstar
Pangea Aerospace
Stoke Space
Polaris Spaceplanes
Bath Rocket Team
SpaceFields
LEAP 71
See also
External links
|
|